
第 05章：函数的定义

	
	

² 利用已有函数定义新函数

¡ 问题 1：判断一个整数是不是偶数

even :: Int -> Bool

even n = mod n 2 == 0

¡ 问题 2：计算一个浮点数的倒数

recip :: Double -> Double

recip x = 1 / x

¡ 问题 3：将一个 list在位置 n分开

splitAt :: Int -> [a] -> ([a], [a])

splitAt n xs = (take n xs, drop n xs)

² Conditional Expression / 条件表达式	

As in most programming languages,	

 functions can be defined using conditional expressions.

abs :: Int -> Int

abs n = if n >= 0 then n else -n

¡ abs takes an integer n and returns n if it is non-negative and
-n otherwise.

Conditional expressions can be nested.

signum :: Int -> Int

signum n = if n < 0 then -1 else

signum n = if n == 0 then 0 else 1

¡ Conditional expressions must always have an else branch, which

主要知识点：

¡ 利用已有函数定义新函数 / 条件表达式 / 模式匹配 / Lambda表达式 /
Section

avoids any possible ambiguity problems with nested conditionals.

² Guarded Equation	

As an alternative to conditionals, functions can also be defined
using guarded equations.

abs :: Int -> Int

abs n | n >= 0 = n

abs n | otherwise = -n

¡ The catch all condition otherwise is defined in Prelude by
otherwise = True

Guarded equations can be used to make definitions involving
multiple conditions easier to read.

signum :: Int -> Int

signum n | n < 0 = -1

signum n | n == 0 = 0

signum n | otherwise = 1

² Pattern Matching / 模式匹配	

Many functions have a particularly clear definition using pattern
matching on their arguments.

not :: Bool -> Bool

not False = True

not True = False

¡ In Prelude, the type Bool is defined as

Bool = True | False

¡ True and False are the only two patterns / constructors of Bool
values.

¡ For this reason, if a function is defined on all the two
patterns (i.e., True and False) of Bool values, then this
function is defined on all Bool values.

Functions can often be defined in many different ways using
pattern matching.

For example:

(&&) :: Bool -> Bool -> Bool	

True && True = True	

True && False = False	

False && True = False 	

False && False = False

 (&&) :: Bool -> Bool -> Bool	
 True && True = True	
 _ && _ = False

¡ The underscore _ is a wildcard pattern that matches any
argument value.

However, the following definition is more efficient, because it
avoids evaluating the second argument if the first argument is
False.

(&&) :: Bool -> Bool -> Bool	
True && b = b	
False && _ = False

Patterns are matched in order.

For example, the following definition always returns False:

(&&) :: Bool -> Bool -> Bool	
_ && _ = False	
True && True = True

Patterns may not repeat variables.

For example, the following definition gives an error:

(&&) :: Bool -> Bool -> Bool	
b && b = b	
_ && _ = False

² List Patterns

Internally, every non-empty list is constructed by repeated use of
an operator (:) called “cons” that adds an element to the start of

a list.

 [1, 2, 3, 4] === 1 : 2 : 3 : 4 : []

Functions on lists can be defined using x:xs patterns.

head :: [a] -> a	
head (x:_) = x

¡ head map any non-empty list to its first element.

tail :: [a] -> [a]	
tail (_:xs) = xs

¡ tail map any non-empty list to its tail list.

x:xs patterns only match non-empty lists.

x:xs patterns must be parenthesised, because application has
priority over (:).

For example, the following definition gives an error:

 head x:_ = x

² Tuple Patterns

 -- Extract the first component of a pair.	
 fst :: (a, b) -> a	
 fst (x, _) = x	
	
 -- Extract the second component of a pair.	
 snd :: (a, b) -> b	
 snd (_, y) = y

² Lambda Expressions	

Functions can be constructed without naming the functions by using
lambda expressions.

\x -> x + x

¡ This is a nameless function that takes a value x and returns
the result x + x

Lambda expressions can be used to give a formal meaning to
functions defined using currying.

 add x y = x + y

 === add = \x -> (\y -> x + y)

Lambda expressions can be used to avoid naming functions that are
only referenced once.

odds n = map f [0..n-1]	

 where	

 f x = x * 2 + 1

 -- defined in Prelude

 map :: (a -> b) -> [a] -> [b]

 map _ [] = []

 map f (x:xs) = f x : map f xs

¡ The odds definition above can be simplified to

odds n = map (\x -> x * 2 + 1) [0..n-1]

² Operator Sections

An operator written between two arguments can be converted into a
curried function written before two arguments by using parentheses.

	
This convention also allows one of the arguments of the operator
to be included in the parentheses.

There is a special case:

In general, if there is an operator ⊕ then functions of the form
(⊕), (x ⊕) and (⊕ y) are called sections.

¡ (⊕) === \x -> (\y -> x ⊕ y)

¡ (x ⊕) === \y -> x ⊕ y

¡ (⊕ y) === \x -> x ⊕ y

Useful functions can sometimes be constructed in a simple way
using sections.

¡ (+ 1) successor function

¡ (1 /) reciprocation function

¡ (* 2) doubling function

¡ (/ 2) halving function

	

	

作业 01

Consider a function safetail that behaves in the same way as
tail, except that safetail maps the empty list to the empty list,
whereas tail gives an error in this case.

Define safetail in three ways using:	

¡ a conditional expression;	

¡ guarded equations;	

¡ pattern matching.	

	

Hint: the library function null :: [a] -> Bool can be used to
test if a list is empty.

作业 02

The Luhn algorithm is used to check bank card numbers for simple
errors such as mistyping a digit, and proceeds as follows:	

1. consider each digit as a separate number;	

2. moving left, double every other number from the second last;（从
右向左，偶数位的数字乘 2）	

3. subtract 9 from each number that is now greater than 9; add all
the resulting numbers together;	

4. if the total is divisible by 10, the card number is valid.	

	

Define a function luhn :: Int -> Int -> Int -> Int -> Bool that
decides if a four-digit bank card number is valid. For example:	

	

> luhn 1 7 8 4	

True	

	

> luhn 4 7 8 3	

False

